数の比較Part06

何のひねりもない数の比較の一覧表第6弾です。
今パートは2~10までの数を扱います。
未掲載の数や数式も随時追加の予定です。

表の見方
種別欄:自…自然数、整…整数、有…有理数、無…無理数、代…代数的数、超…超越数
特に断りのない限り、数式中のlog(x)は常用対数、ln(x)は自然対数、pは素数であるものとします。


名称 英語名 種別 判明済桁数
2.0298832128193八の字結び目における双極体積Figure eight knot hyperbolic volume
WMWA091518
2.0344439357957arg(2i-1)Golden Rhombus β
\(\displaystyle \cos^{-1} \left( \frac{-1}{\sqrt{5}} \right) = \sec^{-1} \left( – \sqrt{5} \right) = \arg \left( 2i-1 \right) \\\displaystyle \approx 116.6550^{\circ} \)
WMWA137218
2.03816937970215QRS Constant
\(\displaystyle S \left( N, a \right) = \sum_{i=1}^{N} \left[ 1 – a^2 \left( 1 – \frac{2i-2}{N-1} \right)^2 \right]^{-3/2} \\\displaystyle C = \lim_{N \to \infty} \frac{S \left( N, 1-c_{1}/N \right)}{N^{3/2}} \)
WMWA131330
2.09455148154232ウォリス定数Wallis Constant
\(\displaystyle W = \sqrt[3] \frac{45 + \sqrt{1929}}{18} + \sqrt[3] \frac{45 – \sqrt{1929}}{18} \) 
x3 -2x -5 = 0の解の一つ
WMWA007493
2.20741609916247ソファ問題における面積の下限値Moving Sofa Problem
S≧π/2+2/π。この問題のGerverが示すソファの面積は2.21953166887197…である。上限値は2.37
WMWA086118
2.23606797749978√5
2.23943310400526Takeuchi-Prellberg Constant24?
\(\displaystyle c = \lim_{n \to \infty} \frac{T_n}{B_n \exp \left( W^2 \left( n \right) /2 \right)} \)
Tn竹内数、Bnベル数、W(n):ランベルトのW関数
WMWA143307
2.29316628741186Foias constant β
\(\displaystyle x^{x+1} = \left( x+1 \right)^{x} \)
WMWA085846
2.29558714939263放物線定数Universal parabolic constant
\(\displaystyle P_{2} = \ln \left( 1+ \sqrt{2} \right) + \sqrt{2} \\\displaystyle = \sinh^{-1} 1 + \sqrt{2} \\\displaystyle = \cosh^{-1} \sqrt{2} + \sqrt{2} \)
WMWA103710
2.30258509299404ln(10)
2.34694130416726アインシュタイン関数の変曲点Einstein Functions
\(\displaystyle E_1 \left( x \right) = x^2 e^x \left( e^x – 1 \right)^{-2} \)
のとき、E”1(x)=0の解
WMWA118080
2.37313822083125Lévy 2 constant
\(\displaystyle 2 \ln \gamma = \frac{\pi^2}{6 \ln 2} \)
A174606
2.39996322972865Golden angle
\(\displaystyle \left( 4-2 \Phi \right) \pi = \left( 3- \sqrt{5} \right) \pi \)
= 137.5077640500378546…°
WMWA131988
2.41421356237309白銀比Silver ratio
\(\displaystyle 1+ \sqrt{2} = \frac{2+ \sqrt{2^{2} +4}}{2} \)
WMWA014176
2.50290787509589二番目のファイゲンバウム定数Feigenbaum constant超?
WMWA006891
2.506628274631√2π
\(\displaystyle \sqrt{2 \pi} = \lim_{n \to \infty} n! e^n n^{-n-1/2} \)
A019727
2.51188643150958100^(1/5)Pogson’s Ratio
天文学における恒星の明るさの比
WMWA189824
2.58498175957925シエルピンスキー定数Sierpiński’s constant
\(\displaystyle \ln \left( 4 \pi^{3} e^{2 \gamma} \Gamma^{-4} \left( 4^{-1} \right) \right) \)
γ:オイラーの定数
WMWA062089
2.59653629045054Barban’s Constant
\(\displaystyle \prod_p \left( 1+ \frac{3 p^2 – 1 }{ p \left( p+1 \right) \left( p^2 – 1 \right) } \right) \)
WMWA175640
2.59807621135331Twenty-Vertex Entropy Constant
(3/2)√3
WMWA104956
2.62205755429211Lemniscate or Gauss constant
\(\displaystyle L = \varpi \pi G = 4 \sqrt{2 \pi^{-1}} \Gamma \left( 5/4 \right)^2 \\\displaystyle = \sqrt{2 \pi^{-1}} \Gamma \left( 1/4 \right)^2 /4 \\\displaystyle = 4 \sqrt{2 \pi^{-1}} \left( \left( 1/4 \right)! \right)^2 \\\displaystyle \int_{0}^{\pi} \frac{d \theta}{\sqrt{1 + \sin^2 \theta}} = 2 \int_{0}^{1} \frac{dx}{\sqrt{1-x^4}} \)
WMWA062539
2.66514414269022ゲルフォント=シュナイダー定数Gelfond–Schneider constant
\(\displaystyle 2^{\sqrt{2}} \)
WMWA007507
2.6854520010653ヒンチン定数Khinchin’s constant超?7350
\(\displaystyle K_0 = \prod_{n \geq 1} \left( 1+ \frac{1}{n^2 + 2n} \right)^{\log_2 n} \)
WMWA002210
2.71828182845904ネイピア数Euler’s number100000000000
\(\displaystyle e = \lim_{n \to \infty} \left( 1+ \frac{1}{n} \right)^{n} \)
2.7472382749323Ramanujan nested radical
\(\displaystyle R_{5} = \sqrt{5+ \sqrt{5+ \sqrt{5- \sqrt{5+ \sqrt{5+ \sqrt{5+ \sqrt{5- \cdots}}}}}}} \\\displaystyle = \frac{2+ \sqrt{5}+ \sqrt{15- 6 \sqrt{5}}}{2} \)
A286984
2.79128784747792Nested radical S5
\(\displaystyle S_{5} = \frac{\sqrt{21} +1}{2} = \sqrt{5+ \sqrt{5+ \sqrt{5+ \sqrt{5+ \cdots}}}} \\\displaystyle = 1+ \sqrt{5- \sqrt{5- \sqrt{5- \sqrt{5- \cdots}}}} \)
A222134
2.80777024202851フランセン・ロビンソン定数Fransén–Robinson constant
\(\displaystyle F = \int_{0}^{\infty} \frac{dx}{\Gamma \left( x \right)} = e+ \int_{0}^{\infty} \frac{e^{-x}}{\pi^2+ \ln^2 x} dx \)
WMWA058655
2.82641999706759村田定数Murata’s constant
\(\displaystyle C_{m} = \prod_{p} \left( 1+ \left( p-1 \right)^{-2} \right) \)
WMWA065485
2.95576528565199根付き木が関連する定数αRooted Tree
根付き木の数列でn番目の値/n-1番目の値が収束する値
\(\displaystyle T_{0} = 0 , T_{1} = 1 , T_{i+1} = i^{-1} \sum_{j=1}^{i} \left( \sum_{d \vert j} T_{d}d \right) T_{i-j+1} \)
のとき、
\(\displaystyle \alpha \equiv \lim_{n \to \infty} \frac{T_{n}}{T_{n-1}} \)
但し、d|jは自然数jにおいてj/d ∈Nが成り立つ全ての自然数dを表す
WMWA051491
2.9754717165844半径が1のルーローの三角形の表面積surface area of a unit Reuleaux triangle
\(\displaystyle S = 8 \pi – 18 \cos^{-1} \left( 3^{-1} \right) \)
WMWA202473
3
\(\displaystyle \sqrt{1 + 2 \sqrt {1 + 3 \sqrt{1 + 4 \sqrt{1 + 5 \sqrt{\cdots}}}}} \)
(参考)
gagone( =A(1, 1) = 2↑1-2(1+3)-3 )
3.05940740534257二重階乗定数 m(2)Double factorial constant
\(\displaystyle \sum_{n \geq 1} \frac{1}{n!!} = \sqrt{e} \left( \frac{\sqrt{2}}{2} + \gamma \left(\frac{1}{2}, \frac{1}{2} \right) \right) \)
γ(a, x)
WMWA143280
3.14159265358979円周率Pi31415926535897
3.24697960371746白銀定数Silver Constant, Tutte–Beraha constant, Tutte–Beraha constant
\(\displaystyle \varsigma = 2 + 2 \cos \frac{2 \pi}{7} \\\displaystyle = 2 + \frac{2+ \sqrt[3]{7+ 7 \sqrt[3]{7+ 7 \sqrt[3]{7+ \cdots}}}}{1+ \sqrt[3]{7+ 7 \sqrt[3]{7+ 7 \sqrt[3]{7+ \cdots}}}} \)
x3 – 5x2 + 6x – 1 = 0 の解の一つ
WMWA116425
3.27582291872181レヴィ定数Lévy’s constant
\(\displaystyle \gamma = \exp \left( \frac{\pi^2}{12 \ln 2} \right) \)
WMWA086702
3.29891353808841三重階乗定数 m(3)3rd reciprocal multifactorial constant
\(\displaystyle \sum_{n \geq 0} \frac{1}{n!!!} \\\displaystyle = \frac{e^{1/3}}{3} \left[ 3 + 3^{1/3} \gamma \left( \frac{1}{3}, \frac{1}{3} \right) + 3^{2/3} \gamma \left( \frac{2}{3}, \frac{1}{3} \right) \right] \\\displaystyle = \frac{e^{1/3}}{3} \left( 3 + 3^{1/3} \int_{0}^{1/3} t^{-2/3} e^{-t} dt + 3^{2/3} \int_{0}^{1/3} t^{-1/3} e^{-t} dt \right) \)
WMWA288055
3.30277563773199青銅比Bronze ratio
\(\displaystyle \sigma_{Rr} = \frac{3+ \sqrt{13}}{2} = \frac{3+ \sqrt{3^{2} +4}}{2} \\\displaystyle = 1+ \sqrt{3+ \sqrt{3+ \sqrt{3+ \sqrt{3+ \cdots}}}} \)
WikiA098316
3.35988566624317フィボナッチ数列の逆数和Reciprocal Fibonacci constant
\(\displaystyle \Psi = \sum_{n \geq 1} F_{n}^{-1} \)
WMWA079586
3.36431757815589van der Corput’s Constant
WMWA143305
3.37028325949737回文数の逆数和Palindromic number
WMWA118031
3.40706916562725Magata’s constant
WMWA092894
3.46274661945506Wallis Formula
WMWA065446
3.56994567187094ロジスティック写像の集積点logistic map代?
WMW1WMW2A098587
3.6256099082219Γ(1/4)
A068466
3.8414990075435ロジスティック写像logistic map代?
x6-6x5+4x4+24x3-14x2-36x-81=0の解の一つ
WMWA086179
4(下記参照)
gartwo(=2*2), fztwo(=2^2), fugatwo(=2↓↓2=222-1),
megafugatwo(=2↑↑2), boogatwo(= 2↑2-22 )
4.13273135412249√τe=√2πe
4.36777096705601second inflection point of x^(1/x)
WMWA103476
4.52782956616087Freiman’s Constant
\(\displaystyle F = \frac{2221564096 + 283748 \sqrt{462}}{491993569} \)
WMWA118472
4.53236014182719ヴァン・デル・パウ定数Van der Pauw’s constant
\(\displaystyle \frac{\pi}{\ln 2} \)
WikiA163973
4.66920160910299一番目のファイゲンバウム定数Feigenbaum constants δ
\(\displaystyle x_{n+1} = ax_{n} \left( 1-x_{n} \right) = a \sin \left( x_{n} \right) \\\displaystyle \lim_{n \to \infty} \frac{x_{n+1} – x_{n}}{x_{n+2} – x_{n+1}} \\\displaystyle x \in \left( 3.8284; \ 3.8495 \right) \)
WMWA006890
4.81047738096535John constant
\(\displaystyle \sqrt[i]{i} = i^{-i} = \left(i^i \right)^{-1} \\\displaystyle = e^{\pi/2} = \sqrt{\sum_{n \geq 0} \frac{\pi^n}{n!}} \)
A042972
5
5.24411510858423Lemniscate constant
\(\displaystyle s = \frac{\Gamma^2 \left( 1/4 \right)}{\sqrt{2 \pi}} \)
WMWA064853
5.25694640486057半径1のn次元球の体積が最大になる次元nBall
\(\displaystyle \gamma + \ln \pi – H_{n/2} = 0 \) の解
WMWA074455
5.5Linnik’s Constant
Heath-Brownによる値。L=2とする場合もあり
WMW
5.57494152476088ベル数/階乗の無限和Bell Number
ee-1
A234473
5.97798681217834マーデルング定数に関連した値の一つMadelung Constant 2
\(\displaystyle h_{2} \left( 2 \right) = \pi \sqrt{3} \ln 3 \)
WMWA086055
6最初の完全数
6.28318530717958τ=2π
6.580885991017922^eFroda constant
A262993
6.85410196624968(下記参照)
Φ^4。パスカルの三角形且つフィボナッチ数である桁を表す数列でn番目の値/n-1番目の値が収束する値
A100022
7
gagtwo( =A(2, 2) = 2↑2-2(2+3)-3 )
8
8.70003662520819Polygon Circumscribing
\(\displaystyle \prod_{n \geq 3} \sec \frac{\pi}{n} \)
逆数あり
WMWA051762
9
garthree (=3*3)
9.28902549192081Varga’s Constant
逆数も定義されている
WMWA073007
9.86960440108935π^2
10

コメント

タイトルとURLをコピーしました