数の比較Part02

何のひねりもない数の比較の一覧表第2弾です。
今パートは0.1~オイラーの定数までの数を扱います。
未掲載の数や数式も随時追加の予定です。

表の見方
種別欄:自…自然数、整…整数、有…有理数、無…無理数、代…代数的数、超…超越数
特に断りのない限り、数式中のlog(x)は常用対数、ln(x)は自然対数、pは素数であるものとします。


名称 英語名 種別 判明済桁数
0.110^(-1)one tenth
0.108410151223111Trott constant T1
連分数展開で
\(\displaystyle [0; 1, 0, 8, 4, 1, 0, 1, 5, 1, 2, 2, 3, 1, 1, 1, 3, 6, \ldots ] \)
WMWA039662
0.107653919226484One-Ninth Constant
逆数も定義されている (A073007)
WMWA072558
0.110000999969134リウヴィル定数に近似する代数方程式の解Liouville’s constant
10x6-75x3-190x+21=0
WMWA093409
0.110001リウヴィル定数Liouville’s constant
\(\displaystyle l = \sum_{n \geq 1} 10^{-n!} \)
WMWA012245
0.114942044853296ケプラー=ブカンプ定数Kepler–Bouwkamp constant
\(\displaystyle \prod_{n \geq 3} \cos \frac{\pi}{n} \)
逆数もある
WMWA085365
0.118419723766729Planck’s Radiation Function
\(\displaystyle f \left( x \right) = \frac{15}{\pi^{4} x^{5} \left( e^{x^{-1}} -1 \right)} \)
の時、f”(x) = 0の解の一つ
WMWA133839
0.123456789101112チャンパーノウン定数Champernowne constant
\(\displaystyle C_{10} = \sum_{n \geq 1} \sum_{k=10^{n-1}}^{10^{n}-1} \frac{k}{10^{kn-9 \sum_{j=0}^{n-1} 10^{j} \left( n-j-1 \right)}} \\\displaystyle = \sum_{n \geq 1} \frac{n}{10^{n+ \sum_{k=1}^{n} \lfloor \log \left( k \right) \rfloor}} \)
WMWA033307
0.147583617650433Plouffe’s Constant C
\(\displaystyle C = \frac{1}{\pi} \tan^{-1} \frac{1}{2} \\\displaystyle = \frac{1}{\pi} \sum_{n \geq 0} \frac{\left( -1 \right)^{n}}{\left( 2^{2n+1} \right) \left( 2n+1 \right)} \)
WMWA086203
0.159154943091895Plouffe’s constant A
1/2π
WMWA086201
0.171500493141536Hall-Montgomery Constant
\(\displaystyle \delta_0 = 1 – \frac{\pi^2}{6} – \ln \left( 1 + \sqrt{e} \right) \ln \left( \frac{e}{(1 + \sqrt{e}} \right) + 2 \mathrm{Li}_2 \left( \frac{1}{1 + \sqrt{e}} \right) \\\displaystyle = 1 + \frac{\pi^2}{6} + 2 \mathrm{Li}_2 \left( – \sqrt{e} \right) \)
WMWA143301
0.180550541849851Sinc Function
\(\displaystyle \prod_{n \geq 1} \mathrm{sinc} \frac{2 \pi}{2n+1} \)
= π/2K
WMWA118253
0.187859642462067MRB定数MRB constant
\(\displaystyle \sum_{k \geq 1} \left( -1 \right)^k \left( k^{k^{-1}} -1 \right) \)
WMWA037077
0.1945280494653252nd du Bois-Reymond constant
\(\displaystyle C_{2} = \frac{e^{2} – 7}{2} = \int_{0}^{\infty} \vert \frac{d}{dt} \left( \frac{\sin t}{t} \right)^{2} \vert dt -1 \)
WMW
0.199458818Vallée Constant9?
WMWA143302
0.2Bruijn–Newman定数の上限値de Bruijn–Newman constant
pdf
0.201405235272642Planck’s Radiation Function
\(\displaystyle f \left( x \right) = \frac{15}{\pi^{4} x^{5} \left( e^{x^{-1}} -1 \right)} \)
の時、f'(x) = 0の解
WMWA133838
0.202456141492396White House Switchboard Constant
\(\displaystyle W = \exp \left( – \left( 1 + 8^{1/ \left( e-1 \right)} \right)^{1 / \pi} \right) \)
近似値を表す式が5種類ある
WMWA182064
0.207879576350761i^iの主値
\(\displaystyle e^{- \frac{\pi}{2}} \)
WMWA049006
0.208987640249978リュカ数列の派生Lucas number
リュカ数列の10^n番目の桁数を小数展開した時の収束値
\(\displaystyle \log \phi = \lim_{n \to \infty} 10^{-n} \log \left( \left( \frac{1+ \sqrt{5}}{2} \right)^{10^n} + \left( \frac{1- \sqrt{5}}{2} \right)^{10^n} \right) \)
※φ:黄金比
WMWA097348
0.21862Cameron’s Sum-Free Set Constant
上限値。下限値は0.21759
WMW
0.235711131719232コープランド・エルデシュ定数Copeland–Erdős constant
\(\displaystyle C_{CE} = \sum_{n \geq 1} p_{n} 10^{-n- \sum_{k=1}^{n} \lfloor \log{p_{k}} \rfloor} \)
\( p_n \)はn番目の素数
WMWA033308
0.2477過剰数の自然密度
±0.0003の幅がある
0.261497212847642マイセル-メルテンス定数Meissel–Mertens constant超?8010
\(\displaystyle M = B_{1} = \lim_{n \to \infty} \left( \sum_{p \leq n} \frac{1}{p} – \ln \left( \ln \left( n \right) \right) \right) \\\displaystyle = \gamma + \sum_{p} \left( \ln \left( 1- \frac{1}{p} \right) + \frac{1}{p} \right) \\\displaystyle = \gamma – \sum_{k \geq 1} \sum_{j \geq 2} \frac{1}{jp_{k}^{j}} = \gamma – \sum_{j \geq 2} \frac{P \left( n \right)}{n} \\\displaystyle = \gamma + \sum_{m \geq 2} \frac{\mu \left( m \right)}{m} \ln \left( \zeta \left( m \right) \right) \)
γ:オイラーの定数、P(n):素数ゼータ関数、μ(m):メビウス関数
WMWA077761
0.270079723310951Plouffe’s Constants B’
1/π ⨁ 1/4π
⨁:2進数における排他的論理和
WMWA111953
0.273944195739271Trott Constants T2
\(\displaystyle T_{2} = \frac{2}{7+ \frac{3}{9+ \frac{4}{4+ \cdots }}} \)
WMWA091694
0.280169499023869バーシュタイン定数βBernstein’s constant
WMWA073001
0.283757296380075Planck’s Radiation Function
\(\displaystyle f \left( x \right) = \frac{15}{\pi^{4} x^{5} \left( e^{x^{-1}} -1 \right)} \)
の時、f”(x) = 0の解の一つ
WMWA133840
0.284258224651343掛谷問題Kakeya needle problem
((5 – 2√2)π)/24
WMWA093823
0.286747428434478Strongly carefree constant
\(\displaystyle K_{2} = \prod_{p} \left( 1- \frac{3p-2}{p^3} \right) \\\displaystyle = \frac{6}{\pi^2}\prod_{p} \left( 1- \frac{1}{p^{2} +p} \right) \)
WMWA065473
0.288788095086602Tree Searching
\(\displaystyle \prod_{n \geq 1} \left( 1-2^{-n} \right) \)
WMWA048651
0.291560904030818Domino tiling
\(\displaystyle \frac{C}{\pi} = \int_{- \pi}^{\pi} \left( 4 \pi \right)^{-1} \cosh^{-1} \left( \sqrt{\frac{\cos t +3}{2}} \right) dt \)
C:カタランの定数
WMWA143233
0.303663002898732ガウス=クズミン=ウィルズィング定数Gauss–Kuzmin–Wirsing constant385
WMWA038517
0.306348962530033Golden spiral
\(\displaystyle \vert b \vert = \frac{\ln \varphi}{\pi/2} \)
φ:黄金比
WikiA212225
0.306349Golden Rectangle b
\(\displaystyle b = 2 \pi^{-1} \ln \phi \)
WMW
0.308443779561986Littlewood-Salem-Izumi Constant
WMWA157957
0.311078866704819Zolotarev-Schur Constant
\(\displaystyle \sigma = c^{-2} \left( 1 – \frac{E \left( c \right)}{K \left( c \right)} \right)^{2} \)
→K(c):第1種完全楕円積分、E(c):第2種完全楕円積分、c:方程式の一意解
WMWA143295
0.312832929508881積が奇数の素数をとる時のケプラー=ブカンプ定数Kepler–Bouwkamp constant
\(\displaystyle \prod_{p \geq 3} \cos \left( \frac{\pi}{p} \right) \)
WikiA131671
0.318309886183791/π
関連記事
0.322634098939244Squarefree
\(\displaystyle \prod_{p} \left( 1- \frac{2}{p^2} \right) \)
= 2F-1
WMWA065474
\( 0. \dot{3} \)line line picking
line line pickingとは長さが1の線分の間に任意の2点を指定した時の新たな線分の長さの平均値を指す。line pickingには正方形や円などの派生種等多数存在する。特に立方体の時の定数をロビンス定数 (Δ(3)≒0.6617) と呼ぶ。
WMW
0.340537329550999Pólya Random walk constant
\(\displaystyle p \left( 3 \right) = 1- \left( \frac{3}{8 \pi^3} \int_{- \pi}^{\pi}\int_{- \pi}^{\pi}\int_{- \pi}^{\pi} \frac{dxdydz}{3-\cos{x} \cos{y} \cos{z}} \right)^{-1} \\\displaystyle = 1-16 \sqrt{\frac{2}{3}} \pi^{3} \left( \Gamma \left( \frac{1}{24} \right) \Gamma \left( \frac{5}{24} \right) \Gamma \left( \frac{7}{24} \right) \Gamma \left( \frac{11}{24} \right) \right)^{-1} \)
WMWA086230
0.353236371854995ハフナー=サルナック=マッカーリー定数Hafner–Sarnak–McCurley constant
\(\displaystyle \lim_{n \to \infty} D(n) = \prod_{k \geq 1} \left\{ 1- \left[ 1- \prod_{j=1}^{n} \left( 1-p_{k}^{-j} \right) \right]^{2} \right\} \)
WMWA085849
0.366512920581664ガンベル分布の中央値Median of the Gumbel distribution
\(\displaystyle ll_{2} = – \ln \left( \ln \left( 2 \right) \right) \)
A074785
0.367879441171442秘書問題Sultan’s Dowry Problem
1/e。応募者が十分に多い場合、最善の応募者を選択する確率。
WMWA068985
0.373955813619202アルティン定数Artin’s constant
\(\displaystyle C_{A} = \prod_{p} \left( 1- \frac{1}{p^{2} -p} \right) \)
WMWA005596
0.412454033640107プロウエット=トゥエ=モールス定数Prouhet–Thue–Morse constant
\(\displaystyle \sum_{n=0}^{\infty} \frac{t_{n}}{2^{n+1}} \\\displaystyle t_{0} = 0, \quad t_{2n+1} = 1-t_{n}, \quad t_{2n} = t_{n} \)
WMWA014571
0.414682509851111素数定数Prime constant
\(\displaystyle \rho = \sum_{p} 2^{-p} \)
WMWA051006
0.422157733115826半径が1のルーローの四面体の体積Volume of Reuleaux tetrahedron
\(\displaystyle V_{R} = \frac{8 \pi}{3} – \frac{27}{4} \cos^{-1} \frac{1}{3} +\frac{\sqrt{2}}{4} \)
WMWA102888
0.42513153135Aarex’s Funny Number
Pointless Gigantic List of Numbers
0.428249505677094Carefree constant
\(\displaystyle K_{1} = \prod_{p} \left( 1- \frac{2p-1}{p^3} \right) \)
WMWA065464
0.438259147390354フレネル積分Fresnel integral
\(\displaystyle S \left( 1 \right) = \int_{0}^{1} \sin{\left( t^2 \right)} dt = \sum_{n=0}^{\infty} \frac{\left( -1 \right)^{n}}{\left( 2n+1 \right)! \left( 4n+3 \right)} \)
備考:\(\displaystyle S \left( x \right) = \int_{0}^{x} \sin{\left( t^2 \right)} dt = \sum_{n=0}^{\infty} \left( -1 \right)^{n} \frac{x^{4n+3}}{\left( 2n+1 \right)! \left( 4n+3 \right)} \)
WMW
0.440053467052492Yff予想のABC-8ω^3の現在の最大値Yff Conjecture
この時の角度Aの値は約1.409356270
WMWA133845
0.471861653452681Bloch定数の上限値Bloch constant
\(\displaystyle B = \frac{1}{\sqrt{1 + \sqrt{3}}} \frac{\Gamma \left( 1/3 \right) \Gamma \left( 11/12 \right)}{\Gamma \left( 1/4 \right)} \\\displaystyle \sqrt{\pi} 2^{1/4} \frac{\Gamma \left( 1/3 \right)}{\Gamma \left( 1/4 \right)} \sqrt{\frac{\Gamma \left( 11/12 \right)}{\Gamma \left( 1/12 \right)}} \)
下限値は√3/4+2*10^(-4) (≒0.433212702)
WMWA085508
0.47494937998792Weierstrass constant
\(\displaystyle \frac{2^{5/4} e^{\pi/8} \sqrt{\pi}}{\Gamma^{2} \left( 1/4 \right)} \)
WMWA094692
0.475626076735988Plouffe’s Constants B
1/π ⨁ 1/2π
⨁:2進数における排他的論理和
WMWA086202
0.482677281939181Trott Constants T3
\(\displaystyle T_{3} =0+ \frac{4}{8+ \frac{2}{6+ \frac{7}{7+ \cdots }}} \)
WMWA113307
0.494566817223496Shapiro’s Cyclic Sum Constant
WMWA086277
0.507833922868438ln(σ)Somos’s Quadratic Recurrence Constant
\(\displaystyle \sum_{k \geq 1} 2^{-k} \ln k \)
WMWA114124
0.523822571389864Chi(z)=0
\(\displaystyle Chi \left( z \right) = \gamma + \ln z + \int_{0}^{z} \frac{\cosh t – 1}{t} dt = 0 \)
WMWA133746
0.534949606142307Tree β
\(\displaystyle \beta = \frac{1}{\sqrt{2 \pi}} \left( 1 + \sum_{k \geq 2} T’ \left( \alpha^{-k} \right) \alpha^{-k} \right)^{3/2} \)
WMWA086308
0.539645491190413Ioachimescu constant
\(\displaystyle 2+ \zeta \left( \frac{1}{2} \right) = 2- \left( 1+ \sqrt{2} \right) \sum_{n \geq 1} \frac{\left( -1 \right)^{n+1}}{\sqrt{n}} \)
A242616
0.543258965342976Bloch–Landau constant
\(\displaystyle L = \frac{\Gamma \left( \frac{1}{3} \right) \Gamma \left( \frac{5}{6} \right)}{\Gamma \left( \frac{1}{6} \right)} \\\displaystyle = \frac{\left( – \frac{2}{3} \right)! \left( – \frac{1}{6} \right)!}{\left( – \frac{5}{6} \right)!} \)
備考:Γ(n+1) = n!
WMWA081760
0.553574358897045Golden Rhombus θ
\(\displaystyle \theta = \cot^{-1} \phi = 2^{-1} \tan^{-1} 2 \approx 31.7175^{\circ} \)
WMWA195693
0.567143290409783オメガ定数Omega constant
\(\displaystyle \Omega e^{\Omega} = 1 \\\displaystyle \Omega = W \left( 1 \right) = \sum_{n \geq 1} \frac{\left( -n \right)^{n-1}}{n!} \\\displaystyle = \lim_{n \to \infty} {}^{n} \left( e^{-1} \right) = e^{- \Omega} \)
WMWA030178
0.567148130202017Andrica’s Conjecture
127x-113x=1の解。2つの連続する素数p, qに対しqx-px=1となるような最小のx。
WMWA038458
0.56975158291971Weakly carefree constant
\(\displaystyle K_{3} = 2K_{1}-K_{2} \)
K1…Carefree constant、K2…Strongly carefree constant
WMWA118261
0.575959968892945スティーブンス定数Stephens’ constant超?
\(\displaystyle C_{s} = \prod_{p} \left( 1- \frac{p}{p^{3}-1} \right) \)
WMWA065478
0.577215664901532オイラーの定数Euler–Mascheroni constant無?477511832674
\(\displaystyle \gamma = \lim_{n \to \infty} \left( – \ln{n} + \sum_{k=1}^{n} \frac{1}{k} \right) = \int_{1}^{\infty} \left( – \frac{1}{x} + \frac{1}{\lfloor x \rfloor} \right) dx \)
スティルチェス定数γ0の値でもある
WMWA001620

コメント

タイトルとURLをコピーしました