数の比較Part03

何のひねりもない数の比較の一覧表第3弾です。
今パートはオイラーの定数~1までの数を扱います。
未掲載の数や数式も随時追加の予定です。

表の見方
種別欄:自…自然数、整…整数、有…有理数、無…無理数、代…代数的数、超…超越数
特に断りのない限り、数式中のlog(x)は常用対数、ln(x)は自然対数、pは素数であるものとします。


名称 英語名 種別 判明済桁数
0.577215664901532オイラーの定数Euler–Mascheroni constant無?477511832674
\(\displaystyle \gamma = \lim_{n \to \infty} \left( – \ln{n} + \sum_{k=1}^{n} \frac{1}{k} \right) = \int_{1}^{\infty} \left( – \frac{1}{x} + \frac{1}{\lfloor x \rfloor} \right) dx \)
スティルチェス定数γ0の値でもある
WMWA001620
0.57786367489546Masser-Gramain Constant
π/2e
WMWA086056
0.580577558204892Pell constant超?
\(\displaystyle \mathcal{P}_{P} = 1- \prod_{n \geq 0} \left( 1- 2^{-2n-1} \right) \)
WMWA141848
0.581932705608592inflection point of x^(1/x)
WMWA093157
0.58194865931729Landau-Ramanujan Constant C
\(\displaystyle C = \frac{1}{2} \left( 1- \ln \frac{\pi e^{\gamma}}{2L} \right) – \frac{1}{4} \frac{d}{ds} \left( \ln \prod_{p \equiv 3 \pmod 4} \frac{1}{1- p^{-2s}} \right)_{s=1} \)
γL
WMWA227158
0.581976706869326Continued Fraction Constants
\(\displaystyle C_{2} = K_{n \geq 1} \frac{n}{n} = \frac{1}{1+ \frac{2}{2+ \frac{3}{3+ \frac{4}{4+ \frac{5}{5+ \frac{6}{6+ \ddots}}}}}} \\\displaystyle = \left( \frac{\Gamma \left( n+2 \right)}{! \left( n+1 \right)} – 1 \right)^{-1} \\\displaystyle = \frac{1}{e-1} \)
WMWA073333
0.592632718201636Lehmer’s Constant
関連
WMWA030125
0.596347362323194オイラー-ゴンペルツ定数Euler–Gompertz constant
\(\displaystyle G = \int_{0}^{\infty} \frac{e^{-x}}{1+x} dx = \int_{0}^{1} \frac{1}{1- \ln x} dx \\\displaystyle = \int_{0}^{\infty} \ln \left( 1+x \right) e^{-x} dx \\\displaystyle = \frac{1}{1+ \frac{1}{1+ \frac{1}{1+ \frac{2}{1+ \frac{2}{1+ \frac{3}{1+ \frac{3}{1+ \frac{4}{1+ \ddots}}}}}}}} \\\displaystyle = \frac{1}{2- \frac{1^2}{4- \frac{2^2}{6- \frac{3^2}{8- \frac{4^2}{10- \frac{5^2}{12- \frac{6^2}{14- \frac{7^2}{16- \ddots}}}}}}}} \)
-eEi(-1)
WMWA073003
0.5989581675384333進数におけるチャンパーノウン定数Ternary Champernowne constant
C3=0.(1)(2)(10)(11)(12)(20)…3
WMWA077771
0.5990701173677962nd lemniscate constant
L2 = 1/2G
WMWA076390
0.602059991327962カタラン数が関連する数Catalan Number
カタラン数列の10^n番目の桁数を小数展開した時の収束値
\(\displaystyle \log 4 = \lim_{n \to \infty} \log \frac{C_{10^n}}{10^n} \\\displaystyle = \lim_{n \to \infty} \log \frac{\left( 2n \right)!}{10^{n} n! \left( n+1 \right)!} \)
中心二項係数の10^n番目の桁数を小数展開した時の収束値でもある
\(\displaystyle \log 4 = \lim_{n \to \infty} \frac{\lceil \log {2 \cdot 10^{n} \choose 10^{n}} \rceil}{10^{n}} \)
その他、中央二項係数に関する多数の式・値あり
WMWA114493
0.605443657196732QRS Constant
\(\displaystyle S \left( N, a \right) = \sum_{i=1}^{N} \left( 1 – a^{2} \left( 1 – \frac{2i-2}{N-1} \right)^2 \right)^{-3/2} \)
WMWA131329
0.607927101854026ハフナー=サルナック=マッカーリー定数Hafner–Sarnak–McCurley constant
\(\displaystyle D \left( 1 \right) = \frac{6}{\pi^2} = \left( \zeta \left( 2 \right) \right)^{-1} = \prod_{p} \left( 1- p^{-2} \right) \)
互いに素である事に関したとある数式で現れる定数でもある。派生種複数あり
WMWA059956
0.618033988749894共役黄金比Golden ratio conjugate
\(\displaystyle \varphi = \frac{\sqrt{5} -1}{2} \)
WMWA094214
0.62432998854355ゴロム=ディックマン定数Golomb–Dickman constant
WMWA084945
0.62573580720527Kac Formula
\(\displaystyle C_{1} = \frac{2}{\pi} \left\{ \ln 2 + \int_{0}^{\infty} \left( \sqrt{x^{-2} – \frac{4e^{-2x}}{\left( 1-e^{-2x} \right)^2}} – \frac{1}{x+1} \right) dx \right\} \)
WMWA093601
0.630929753571457カントール集合Fractal dimension of the Cantor set
\(\displaystyle d_{f} \left( k \right) = \log_{3} 2 \)
WMWA102525
0.632120558828557時定数Time constant
\(\displaystyle \tau = 1-e^{-1} \)
Wiki
0.636619772367581ビュフォン定数Buffon constant
\(\displaystyle \frac{2}{\pi} = \prod_{p \geq 3} \frac{p+2- \left( p \bmod 4 \right)}{p} \\\displaystyle = 1+ \sum_{n \geq 1} \left( -1 \right)^{n} \left( 4n+1 \right) \left( \frac{\prod_{i=1}^{n} 2i -1}{\prod_{j=1}^{n} 2j} \right) ^{3} \\\displaystyle = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2+ \sqrt{2}}}{2} \cdot \frac{\sqrt{2+ \sqrt{2+ \sqrt{2}}}}{2} \cdot \cdots \)
魔法幾何学的定数の値でもある
OEISA060294
0.643410546288338カエン定数Cahen’s constant4000
\(\displaystyle \xi_{2} = C = \sum_{k \geq 1} \frac{\left( -1 \right)^{k}}{s_{k}-1} \\\displaystyle s_{0} = 2, s_{k+1} = 1+ \prod_{k=0}^{n} s_{k} = e_{k}^{2}-e_{k}+1 \)
E2k+1
WMWA118227
0.646245439894813Masser–Gramain constant
c=γβ(1)+β'(1)
\(\displaystyle = \frac{\pi}{4} \left( 2 \gamma + 3 \ln \pi – 2 \ln 2 – 4 \ln \Gamma \left( 1/4 \right) \right) \)
WMWA086057
0.658365599266331Lower límit iterated exponential
\(\displaystyle \lim_{n \to \infty} H_{2n} = \frac{1}{2} \uparrow \frac{1}{3} \uparrow \frac{1}{4} \uparrow \cdots \uparrow \frac{1}{2n} \)
A242759
0.660161815846869双子素数定数twin primes constant
\(\displaystyle C_{2} = \prod_{p \geq 3} \frac{p \left( p-2 \right)}{\left( p-1 \right)^{2}} \)
WMWA005597
0.661317049469622フェラー=トルニアー定数Feller–Tornier constant超?
\(\displaystyle C_{FT} = \frac{1}{2} + \frac{1}{2} \prod_{p} \left( 1- \frac{2}{p^2} \right) \\\displaystyle = \frac{1}{2} + \frac{3}{\pi^2} \prod_{p} \left( 1- \frac{1}{p^2-1} \right) \\\displaystyle = \frac{1}{2} \left\{ 1+ \exp \left( -\sum_{n \geq 1} \frac{2^{n} P \left( n \right)}{n} \right) \right\} \)
P(n):素数ゼータ関数
WMWA065493
0.661707182267176Robbins constant
\(\displaystyle \Delta \left( 3 \right) = \frac{4+17 \sqrt{2} -6 \sqrt{3} -7 \pi}{105} + \frac{\ln \left( 1+ \sqrt{2} \right) + 2 \ln \left( 2+ \sqrt{3} \right)}{5} \)
WMWA073012
0.662743419349181ラプラス極限定数Laplace limit constant超?
\(\displaystyle \frac{x \exp \left( \sqrt{1+x^2} \right)}{1+\sqrt{1+x^2}} = 1 \)
WMWA033259
0.670873Andrica予想Andrica’s Conjecture
√11-√7。連続する2つの素数p, qに対し、√q-√pが最大となる可能性のある値。
WMW
0.678234491917391谷口定数Taniguchi’s constant超?
\(\displaystyle C_{T} = \prod_{p} \left( 1- \frac{3}{p^3} + \frac{2}{p^4} + \frac{1}{p^5} – \frac{1}{p^6} \right) \\\displaystyle \exp \left( \sum_{n \geq 3} c_{n} P \left( n \right) \right) \\\displaystyle = \exp \left( – 3P \left( 3 \right) + 2P \left( 4 \right) + P \left( 5 \right) – \frac{11}{2} P \left( 6 \right) + 6P \left( 7 \right) + \cdots \right) \)
WMWA175639
0.690347126114964Upper iterated exponential
\(\displaystyle \lim_{n \to \infty} H_{2n+1} = \frac{1}{2} \uparrow \frac{1}{3} \uparrow \frac{1}{4} \uparrow \cdots \uparrow \frac{1}{2n+1} \)
A242760
0.693147180559945ln(2)
0.697774657964007連分数定数Continued Fraction Constant
\(\displaystyle C_1 = C_{CF} = \frac{I_{1} \left( 2 \right)}{I_{0} \left( 2 \right)} = \frac{\sum_{n \geq 0} \frac{n}{n!n!}}{\sum_{n \geq 0} \frac{1}{n!n!}} \\\displaystyle = K_{n \geq 1} \frac{1}{n} = \frac{1}{1+ \frac{1}{2+ \frac{1}{3+ \frac{1}{4+ \frac{1}{5+ \frac{1}{6+ \ddots}}}}}} \)
WMWA052119
0.70258エンブリー=トレフェセン定数Embree–Trefethen constant
乱数フィボナッチ数列の派生
WMWA118288
0.704442200999165Carefree constant
\(\displaystyle C_{2} = \prod_{p} \left(1- \frac{1}{p^2+p} \right) \)
A065463
0.7052301717918Primorial constant
\(\displaystyle \sum_{k \geq 1} \prod_{n=1}^{k} \frac{1}{p_{n}} \)
A064648
0.709803442861291Rabbit Constant
\(\displaystyle R = \sum_{n \geq 1} 2^{- \lfloor n \phi \rfloor} \)
WMWA014565
0.714782700791294Traveling Salesman Constants
\(\displaystyle \lambda = \frac{ \left( 4 + 8 \sqrt{2} \right) \sqrt{51}}{153} \)
派生種にφψがある
WMWA073008
0.719960700043708Smarandache Constants
WMW
0.7236484022982サルナック定数Sarnak’s constant超?
\(\displaystyle C_{s} = \prod_{p \geq 3} \left( 1- \frac{p+2}{p^3} \right) \)
WMWA065476
0.737338303369284Grossman’s Constant
WMWA085835
0.739085133215ドッティ数Dottie number, Cosine, Inverse Cosine
\(\displaystyle \cos \left( x \right) = x \\\displaystyle \lim_{n \to \infty} \cos^{n} \left( c \right) \\\displaystyle = \lim_{n \to \infty} \underbrace{ \cos \left( \cdots \cos \left( \cos \left( \cos \left( c \right) \right) \right) \cdots \right) }_{n}\)
WMWA003957
0.740480489693061Hermite constant Sphere packing 3D Kepler conjecture
\(\displaystyle \mu_{K} = \frac{\pi}{3 \sqrt{2}} \)
WMWWMWA093825
0.747597920253411Rényi’s Parking Constant
\(\displaystyle m = \int_{0}^{\infty} \exp \left( -2 \int_{0}^{x} \frac{1-e^{-y}}{y} dy \right) dx \)
WMWA050996
0.75576131407617icosahedron
Sqrt(42 + 18*sqrt(5))/12, 辺の長さが1の正二十面体に内接する球の半径?
A179294
0.757823011268492Flajolet-Odlyzko Constant
WMWA143297
0.76422365358922ランダウ・ラマヌジャン定数Landau–Ramanujan constant超?30010
\(\displaystyle K = \frac{1}{\sqrt{2}} \prod_{p \equiv 3 \bmod 4} \left( 1- p^{-2} \right)^{-1/2} \\\displaystyle = \frac{\pi}{4} \prod_{p \equiv 1 \bmod 4} \left( 1- p^{-2} \right)^{1/2} \)
WMWA064533
0.765551370675726デラノイ数が関連する数Delannoy number
D(10^n)の桁数を小数展開した時の収束値
\(\displaystyle \log \left( 3 + 2 \sqrt{2} \right) \\\displaystyle \lim_{n \to \infty} 10^{-n} \sum_{k=0}^{10^{n}} { 10^{n} \choose k } { 10^{n} + k \choose k } \)
WMWA104178
0.768225422326056Dedekind Eta Function
WMWA091343
0.779893400376822フレネル積分Fresnel integral
\(\displaystyle C \left( 1 \right) = \int_{0}^{1} \cos{\left( t^2 \right)} dt = \sum_{n \geq 0} \frac{\left( -1 \right)^{n}}{\left( 2n \right)! \left( 4n+1 \right)} \)
備考:\(\displaystyle C \left( x \right) = \int_{0}^{x} \cos{\left( t^2 \right)} dt = \sum_{n \geq 0} \left( -1 \right)^{n} \frac{x^{4n+1}}{\left( 2n \right)! \left( 4n+1 \right)} \)
A099290
0.783430510712134二年生の夢Sophomore’s dream1
\(\displaystyle I_{1} = \int_{0}^{1} x^{x} dx = \sum_{n \geq 1} \left( -1 \right)^{n+1} n^{-n} \)
WMWA083648
0.788530565911508Lüroth constant
\(\displaystyle \sum_{n \geq 2} n^{-1} \ln \frac{n}{n-1} \)
WMWA085361
0.794507192779479Kolakoski Constant
WMWA118270
0.809394020540639Alladi–Grinstead constant
\(\displaystyle A_{AG} = \exp \left( -1+ \sum_{k \geq 2} \sum_{n \geq 1} n^{-1} k^{-n-1} \right) \\\displaystyle = \exp \left( -1- \sum_{k \geq 2} k^{-1} \ln \left( 1-k^{-1} \right) \right) \)
WMWA085291
0.812556559016006Stolarsky-Harborth Constant
WMWA077464
0.812557858821472Grothendieck’s Constant x0
WMWA088373
0.822467033424113Nielsen–Ramanujan constant
\(\displaystyle \frac{\zeta \left( 2 \right)}{2} = \sum_{n \geq 1} \frac{\left( -1 \right)^{n+1}}{n^2} \)
A072691
0.8227Rutherford Constant
WMW
0.826993343132688Disk Covering
\(\displaystyle C_{5} = \left( \sum_{n \geq 0} {3n+2 \choose 2}^{-1} \right)^{-1} = \frac{3 \sqrt{3}}{2 \pi} \)
WMWA086089
0.834626841674073ガウス定数Gauss’s constant超?
\(\displaystyle G = \frac{1}{\mathrm{agm} \left( 1, \sqrt{2} \right) } = \frac{4 \sqrt{2} \left( \frac{1}{4}! \right)^2}{\pi^{3/2}} \\\displaystyle = \frac{2}{\pi} \int_{0}^{1} \frac{dx}{\sqrt{1-x^4}} \)
agm(a, b):算術幾何平均、派生種複数あり
WMWA014549
0.835648848264721ベイカー定数Baker constant
\(\displaystyle \beta_{3} = \int_{0}^{1} \frac{dt}{1+t^3} = \sum_{n \geq 0} \frac{\left( -1 \right)^n}{3n+1} \\\displaystyle = \frac{1}{3} \left( \ln 2 + \frac{\pi}{\sqrt{3}} \right) \)
A113476
0.850736188201867Regular paperfolding sequence
\(\displaystyle P_{f} = \sum_{n \geq 0} \frac{8^{2^n}}{2^{2^{n+2}} -1} = \sum_{n \geq 0} \frac{2^{-2^n}}{1- 2^{-2^{n+2}}} \)
WMWA143347
0.859099796854703Thue Constant
0.11011011111011011111…2
Substitution Systemに基づく
WMWA074071
0.8622401258680542進数におけるチャンパーノウン定数Binary Champernowne Constant
C2=0.(1)(10)(11)(100)(101)(110)(111)…2
\(\displaystyle \sum_{n \geq 1} n \cdot 2^{-n – \sum_{k=1}^{n} \lfloor \log_{2} k \rfloor} \)
WMWA066716
0.866025403784438ルベーグ最小値問題に関わる値の一つLebesgue Minimal Problem
√3/2
WMW
0.87058838四つ子素数におけるブルン定数Brun’s constant (Brun’s theorem)8
\(\displaystyle \sum_{p, p+2, p+6, p+8 \in \mathbb{ P }} \left( \frac{1}{p} + \frac{1}{p+2} + \frac{1}{p+6} + \frac{1}{p+8} \right) \)
WikiA213007
0.872284041065627Area of Ford circle
\(\displaystyle A_{CF} = \sum_{q \geq 1} \sum_{\left( p , q \right) = 1 \\ 1 \leq p \leq q} \frac{\pi}{4q^{4}} \\\displaystyle = \frac{\pi \zeta \left( 3 \right)}{4 \zeta \left( 4 \right)} = \frac{45 \zeta \left( 3 \right)}{2 \pi^3} \)
WMWA279037
0.8744643684049441と重複分を除く累乗数の逆数Perfect Power
\(\displaystyle \sum_{k \geq 2} \mu \left( k \right) \left[ 1 – \zeta \left( k \right) \right] \)
μ(k):メビウス関数
WMWA072102
0.88151383972517二次類数定数Quadratic class number constant
\(\displaystyle Q = \prod_{p} \left( 1- \frac{1}{p^{3}+p^{2}} \right) \)
WMWA065465
0.885603194410888ガンマ関数における関連する値Gamma Function
x>0 においてy = Γ(x)が最小になるyの値。この時のxの値は約1.461632144
WMWA030171
0.908908557548541Complete Elliptic Integral
K(k) = 2E(k)を満たす値k
WMWA086199
0.915502055389676Zolotarev-Schur Constant c超?
WMWA143296
0.915965594177219カタラン定数Catalan’s constant超?15510000000
\(\displaystyle G = \beta \left( 2 \right) = \sum_{n \geq 0} \frac{\left( -1 \right)^{n}}{\left( 2n+1 \right)^{2}} \\\displaystyle = \int_{0}^{1} \int_{0}^{1} \frac{1}{1+x^{2} y^{2}} dxdy \)
その他定積分の式が複数あり
備考(ディリクレ-ベータ関数): \(\displaystyle \beta \left( s \right) = \sum_{n \geq 0} \frac{\left( -1 \right)^{n}}{\left( 2n+1 \right)^{s}} \)
WMWA006752
0.923563831674181Mertens Theorem
\(\displaystyle \zeta \left( 2 \right) e^{- \gamma} \)
WMWA246499
0.92883582713双子素数の組の平均の逆数の合計Sum of the reciprocals of the averages of the twin prime pairs, JJGJJG
\(\displaystyle B_{1} = \frac{1}{4} + \frac{1}{6} + \frac{1}{12} + \frac{1}{18} + \frac{1}{30} + \frac{1}{42} + \cdots \)
WMWA241560A014574
0.955316618124509Magic angle
\(\displaystyle \theta_{m} = \arctan \left( \sqrt{2} \right) = \arccos \left( \sqrt{\frac{1}{3}} \right) \\\displaystyle \approx 54.7356^{\circ} \)
WikiA195696
0.970270114392033Lochs定数Lochs’s theorem
\(\displaystyle 6 \pi^{-2} \ln 2 \ln 10 \)
WMWA086819
0.978012478186646Shapiro’s cyclic sum constant
WMWA086278
0.987700390736053ルーローの三角形Reuleaux triangle
\(\displaystyle r^{2} \cdot \left( 2 \sqrt{3} + \frac{\pi}{6} -3 \right) : r^{2} \)
回転する半径rのルーローの三角形によって切り取られた領域の面積と一辺の長さrの正方形の面積比
WMWA066666
0.989431273831146Lebesgue constant c
\(\displaystyle \lim_{n \to \infty} \left( L_n – \frac{4}{\pi^2} \ln \left( 2n+1 \right) \right) \\\displaystyle = \frac{8}{\pi^2} \left( \sum_{k \geq 1} \frac{\ln k}{4k^2 -1} – \frac{\Gamma’ \left( 1/2 \right)}{\Gamma \left( 1/2 \right)} \right) \)
リンク先に関連する定数複数あり
WMWA243277
1

コメント

タイトルとURLをコピーしました