今パートは√2~2までの数を扱います。
未掲載の数や数式も随時追加の予定です。
表の見方
種別欄:自…自然数、整…整数、有…有理数、無…無理数、代…代数的数、超…超越数
特に断りのない限り、数式中のlog(x)は常用対数、ln(x)は自然対数、pは素数であるものとします。
値 | 名称 | 英語名 | 種別 | 判明済桁数 |
---|---|---|---|---|
1.41421356237309 | √2 | 代 | 10兆 | |
WMW | ||||
1.44466786100976 | Steiner number, Iterated exponential Constant | 超 | ||
\(\displaystyle e^{e^{-1}} \) \(\displaystyle \lim_{n \to \infty} {}^{n} a \) が収束するaの上限値 (この時の値はe) WMW1、WMW2、A073229 | ||||
1.45136923488338 | ラマヌジャン・ソルドナー定数 μ | Ramanujan–Soldner constant | 無 | 75500 |
\(\displaystyle \mathrm{li} \left( x \right) = \int_{0}^{x} \frac{dt}{\ln t} = 0 \) WMW、A070769 | ||||
1.45607494858268 | バックハウス定数 | Backhouse’s constant | ||
\(\displaystyle \lim_{k \to \infty} \vert \frac{q_{k+1}}{q_{k}} \vert \\\displaystyle Q \left( x \right) = \frac{1}{P \left( x \right)} = \sum_{k \geq 1} q_{k} x^{k} \\\displaystyle P \left( x \right) = \sum_{k \geq 1} p_{k} x^{k} , \quad p_{k} \in \mathbb{ P } \) WMW、A072508 | ||||
1.46099848620631 | Baxter’s Four-coloring constant | |||
\(\displaystyle \prod_{n \geq 1} \frac{\left( 3n-1 \right)^{2}}{3n \left( 3n-2 \right)} = \frac{3 \Gamma^3 \left( 1/3 \right)}{4 \pi^2} \\\displaystyle = \frac{1}{2^{1/3} L} = \frac{2 \pi}{\sqrt{3} \Gamma^3 \left( 2/3 \right)} \) L:ランダウの定数 WMW、A224273 | ||||
1.46557123187676 | 超黄金比 | Supergolden ratio | 代 | |
x3-x2-1=0の解の一つ。 \(\displaystyle \psi = \frac{1+ \sqrt[3]{\frac{29 + 3 \sqrt{93}}{2}} + \sqrt[3]{\frac{29 – 3 \sqrt{93}}{2}}}{3} \\\displaystyle \frac{2}{3} \cosh \left( \frac{\cosh^{-1} \left( 29/3 \right)}{3} \right) + \frac{1}{3} \) Wiki、A092526 | ||||
1.46707807943397 | ポーター定数 | Porter’s constant | ||
\(\displaystyle C = \frac{6 \ln 2}{\pi^2} \left[ 3 \ln 2+4 \gamma – \frac{24}{\pi^2} \zeta’ \left( 2 \right) -2 \right] – \frac{1}{2} \\\displaystyle = \frac{6 \ln 2}{\pi^2} \left[ 3 \ln 2+4 \gamma + \frac{24}{\pi^2} \sum_{k \geq 2} k^{-2} \ln{k} -2 \right] – \frac{1}{2} \\\displaystyle = \frac{6 \ln 2}{\pi^2} \left[ 3 \ln 2+4 \gamma + \frac{24}{\pi^2} \frac{\pi^2}{6} \left( 12 \ln A – \gamma – \ln \left( 2 \pi \right) \right) -2 \right] – \frac{1}{2} \\\displaystyle = \frac{6 \ln 2 \left( 48 \ln A – \ln 2 -4 \ln \pi -2 \right)}{\pi^2} – \frac{1}{2} \) γ:オイラーの定数、A:グレシャー・キンキリン定数 WMW、A086237 | ||||
1.48203750177011 | 五角数の逆数和 | Pentagonal number | ||
\(\displaystyle \sum_{n \geq 1} \frac{2}{n \left( 3n-1 \right)} = 3 \ln 3 – 3^{-1} \pi \sqrt{3} \) WMW、A244641 | ||||
1.50304808247533 | Hard Square Entropy Constant | |||
参考1、参考2 WMW、A085850 | ||||
1.51638605915197 | Watson’s integral | |||
WMW、A086231 | ||||
1.51981775463506 | 15/π^2 | |||
\(\displaystyle \prod_p \left( 1 + p^{-2} \right) = 15 \pi^{-2} \) メビウス関数、素数和、素数積で現れる数の一つ。 A082020 | ||||
1.52362708620249 | ドラゴン曲線 | Fractal dimension of the boundary of the dragon curve | 超 | |
\(\displaystyle C_{d} = \log_{2} \left( \frac{1+ \sqrt[3]{73+ 6 \sqrt{87}} – \sqrt[3]{73- 6 \sqrt{87}}}{3} \right) \) WMW、Wiki、A272031 | ||||
1.52513527616098 | Continued Fraction Constants | |||
\(\displaystyle 1+ K_{n \geq 1} \frac{n}{1} = 1 + \frac{1}{1+ \frac{2}{1+ \frac{3}{1+ \frac{4}{1+ \frac{5}{1+ \frac{6}{1+ \ddots}}}}}} \) WMW、A111129 | ||||
1.52995403705719 | omega_2 Constant | |||
\(\displaystyle \omega_{2} = \frac{\Gamma^{3} \left( 1/3 \right)}{4 \pi} \) WMW、A064582 | ||||
1.539600717839 | リーブの四角氷定数 | Lieb’s square ice constant | 代 | |
\(\displaystyle W_{2D} = \frac{8}{3 \sqrt{3}} \) WMW、A118273 | ||||
1.54149408253679 | Continued Fraction Constants | |||
\(\displaystyle 1+ K_{n \geq 1} \frac{2n}{2n+1} = 1 + \frac{2}{3+ \frac{4}{5+ \frac{6}{7+ \frac{8}{9+ \frac{10}{11+ \frac{12}{13+ \ddots}}}}}} \\\displaystyle = \left( \sqrt{e} -1 \right)^{-1} \) WMW、A113011 | ||||
1.55138752454832 | Calabi triangle constant | 代 | ||
\(\displaystyle C_{CR} = 3^{-1} \cdot 2^{-2 / 3} \left( 2^{2 / 3} + \sqrt[3]{-23+3i \sqrt{237}} + \sqrt[3]{-23-3i \sqrt{237}} \right) \\\displaystyle = \frac{1}{3} \left( 1+ \sqrt{22} \cos \left( \frac{1}{3} \cos^{-1} \left( – \frac{23}{11 \sqrt{22}} \right) \right) \right) \) 2x3 – 2x2 -3x +2 = 0の解 WMW、A046095 | ||||
1.55961046946236 | 2の超平方根 | Super square | ||
xx=2 A030798 | ||||
1.56155281280883 | 2の三角根 | Triangular root | 代 | |
\(\displaystyle R_{2} = \frac{\sqrt{17} -1}{2} \\\displaystyle = \sqrt{4+ \sqrt{4+ \sqrt{4+ \sqrt{4+ \cdots}}}} -1 \\\displaystyle = \sqrt{4- \sqrt{4- \sqrt{4- \sqrt{4- \cdots}}}} \) A222133 | ||||
1.57079632679489 | ウォリス積 | Wallis product | ||
\(\displaystyle \frac{\pi}{2} = \prod_{n \geq 1} \frac{4n^2}{4n^{2}-1} \\\displaystyle = \prod_{n \geq 1} \left( \frac{2n}{2n-1} \cdot \frac{2n}{2n+1} \right) \) WMW | ||||
1.58496250072115 | Hausdorff dimension, Sierpinski triangle | 超 | ||
\(\displaystyle \log_{2} 3 \) Stolarsky-Harborth定数にも関わる WMW、A020857 | ||||
1.606695152415 | エルデシュ-ボールウェイン定数 | Erdős–Borwein constant | 無 | |
\(\displaystyle \sum_{m \geq 1} \sum_{n \geq 1} \frac{1}{2^{mn}} = \sum_{n \geq 1} \frac{1}{2^{n}-1} \) 探索木の定数αの値でもある。探索木に関連する定数が複数あり WMW、A065442 | ||||
1.61111492580837 | 指数階乗定数 | Exponential factorial constant | 超 | |
\(\displaystyle S_{Ef} = \sum_{n \geq 1} \frac{1}{a_{n}} \\\displaystyle a_{0} = 1, a_{n} = n^{a_{n-1}} \) WMW、A080219 | ||||
1.61803398874989 | 黄金比 | Golden ratio | 代 | |
\(\displaystyle \phi = \frac{1+ \sqrt{5}}{2} \) x2-x-1=0の解 WMW、A001622 | ||||
1.64218843522212 | Lebesgue constant L2 | 超 | ||
\(\displaystyle \frac{1}{5} + \frac{\sqrt{25 – 2 \sqrt{5}}}{\pi} \\\displaystyle = \frac{1}{\pi} \int_{0}^{\pi} \frac{| \sin \left( 5t/2 \right) |}{\sin \left( t/2 \right)} dt \) WMW、A226655 | ||||
1.64493406684822 | ζ(2) (リーマンゼータ関数) | Riemann zeta function | 超 | |
\(\displaystyle \zeta \left( 2 \right) = \sum_{k \geq 1} k^{-2} = \frac{\pi^2}{6} \) WMW、A013661 | ||||
1.66168794963359 | ソモス二次再帰定数 | Somos’ quadratic recurrence constant | 超? | |
\(\displaystyle \sigma = \prod_{n \geq 1} n^{2^{-n}} \) WMW、A112302 | ||||
1.70130161670407 | Golden Rhombus p | |||
\(\displaystyle \frac{2}{\sqrt{1+ \phi^{-2}}} = \csc \frac{\pi}{5} \\\displaystyle = \sqrt{2+ \frac{2}{\sqrt{5}}} \) WMW、A121570 | ||||
1.70521114010536 | ニーヴン定数 | Niven’s constant | ||
\(\displaystyle 1+ \sum_{n \geq 2} \left( 1- \frac{1}{\zeta \left( n \right)} \right) \) WMW、A033150 | ||||
1.71400629359161 | Smarandache Constants | |||
WMW、A048834 | ||||
1.73205080756887 | √3 | 代 | ||
WMW | ||||
1.74540566240734 | ヒンチン調和平均 | Khinchin harmonic mean | ||
\(\displaystyle K_{1} = \ln 2 \left( \sum_{n \geq 1} \ln \left( 1- \left( n+1 \right)^{2} \right)^{-1/n} \right)^{-1} \\\displaystyle = – \ln 2 \left( \sum_{n \geq 1} n^{-1} \ln \left( 1- \left( n+1 \right)^{2} \right) \right)^{-1} \\\displaystyle = n \left( \sum_{k \geq 1} a_{k}^{-1} \right)^{-1} \) ak:連分数展開[a0; a1, a2, …]の要素 WMW、A087491 | ||||
1.757932756618 | Kasner number | |||
\(\displaystyle R = \sqrt{1+ \sqrt{2+ \sqrt{3+ \sqrt{4+ \cdots}}}} \) WMW、A072449 | ||||
1.75874362795118 | Infinite product constant | |||
\(\displaystyle Pr_{1} = \prod_{n \geq 2} \left( 1+ \frac{1}{n} \right)^{1/n} \) A242623 | ||||
1.77245385090551 | ガウス積分 | Gaussian integral, Carlson–Levin constant | 超 | |
\(\displaystyle \sqrt{\pi} = \int_{- \infty}^{\infty} e^{-x^2} dx \\\displaystyle \left( – \frac{1}{2} \right) = \int_{0}^{1} \frac{dx}{\sqrt{- \ln x}} \) A002161 | ||||
1.78107241799019 | Exp.gamma, Barnes G-function, Mertens Theorem | |||
\(\displaystyle e^{\gamma} = \prod_{n \geq 1} \frac{e^{n^{-1}}}{1+ n^{-1}} \\\displaystyle = \prod_{n \geq 1} \left( \prod_{k=0}^{n} \left( k+1 \right)^{\left( -1 \right)^{k+1} {n \choose k}} \right)^{\frac{1}{n+1}} \\\displaystyle = \lim_{n \to \infty} \frac{1}{\ln p_{n}} \prod_{k=1}^{n} \frac{1}{1-p_{k}^{-1}} \) γ:オイラーの定数 WMW、A073004 | ||||
1.78221397819136 | Grothendieck’s Constant kR | |||
\(\displaystyle k_{R} = \frac{\pi}{2 \ln \left( 1+ \sqrt{2} \right)} \) WMW、A088367 | ||||
1.78657645936592 | Silverman constant | |||
\(\displaystyle \prod_{p} \left( 1+ \sum_{k \geq 1} \frac{1}{p^{2k} – p^{k-1}} \right) \\\displaystyle = \sum_{n \geq 1} \frac{1}{\phi \left( n \right) \sigma_{1} \left( n \right)} \) →φ(n), σ WMW、A093827 | ||||
1.78723165018296 | Komornik–Loreti constant q | 超 | ||
\(\displaystyle 1 = \sum_{k \geq 1} t_k q^{-k} \\\displaystyle \prod_{k \geq 0} \left( 1-q^{-2^k} \right) +\frac{q-2}{q-1} = 0 \) WMW、A055060 | ||||
1.82282524967884 | Masser-Gramain Constant | |||
1+4c/π WMW、A086058 | ||||
1.83928675521416 | トリボナッチ定数 | Tribonacci Constant | 代 | |
x3-x2-x-1=0の解の一つ x+x-3=2 \(\displaystyle \phi_{3} = \frac{1+ \sqrt[3]{19 + 3 \sqrt{33}} + \sqrt[3]{19 – 3 \sqrt{33}}}{3} \\\displaystyle = 1+ \left( \sqrt[3]{\frac{1}{2} + \sqrt[3]{\frac{1}{2} + \sqrt[3]{\frac{1}{2} + \cdots}}} \right)^{-1} \) WMW、A058265 | ||||
1.84775906502257 | Connective constant | 代 | ||
\(\displaystyle \mu = \sqrt{2+ \sqrt{2}} \) x4-4x2+2=0の解の一つ A179260 | ||||
1.85193705198246 | ギブズ定数 | Gibbs constant | ||
\(\displaystyle G’ = Si \left( \pi \right) = \int_{0}^{\pi} \frac{\sin t}{t} dt \sum_{n \geq 1} \frac{\left( -1 \right)^{n-1} \pi^{2n-1}}{\left( 2n-1 \right) \left( 2n-1 \right)!} \\\displaystyle \int_{0}^{\pi} \mathrm{sinc} \theta d \theta \) WMW、A036792 | ||||
1.85326844870798 | ラプラス限界でレンズ状に囲まれた領域の面積 | Laplace Limit | ||
WMW、A140133 | ||||
1.85407467730137 | Gauss’ Lemniscate constant | |||
\(\displaystyle \omega = \frac{L}{2 \sqrt{2}} = \int_{0}^{\infty} \frac{dx}{\sqrt{1+x^4}} \\\displaystyle = \frac{\Gamma^2 \left( 1/4 \right)}{4 \sqrt{\pi}} \) WMW、A093341 | ||||
1.86002507922119 | Spiral of Theodorus | |||
\(\displaystyle T = \sum_{k \geq 1} \frac{1}{\sqrt{k^3} + \sqrt{k}} \\\displaystyle = 1/2 – \sum_{k \geq 1} \left( -1 \right)^k \left[ \zeta \left( k+1/2 \right) -1 \right] \) WMW、A226317 | ||||
1.89511781635593 | Ei(1) | |||
\(\displaystyle – \int_{-1}^{\infty} \frac{e^{-t}}{t} dt = \gamma + \ln 1 + \sum_{n \geq 1} \frac{1}{n \cdot n!} \) 備考: \(\displaystyle \gamma + \ln z + \sum_{n \geq 1} \frac{z^n}{n \cdot n!} \) WMW、A091725 | ||||
1.902160583104 | 双子素数におけるブルン定数 | Brun’s constant (Brun’s theorem) | 12 | |
\(\displaystyle \sum_{p, p+2 \in \mathbb{ P }} \left( \frac{1}{p} + \frac{1}{p+2} \right) \) WMW、A065421 | ||||
1.92756197548292 | テトラナッチ定数 | Tetranacci constant | 代 | |
x4-x3-x2-x-1=0の解の一つ x+x-4=2 WMW、A086088 | ||||
1.92878218715021 | prime-generating constant | |||
\(\displaystyle \lfloor \left( 2 \uparrow \right)^{n} \omega \rfloor = p \\\displaystyle \lfloor 2^{\omega} \rfloor = 3, \lfloor 2^{2^{\omega}} \rfloor = 13, \lfloor 2^{2^{2^{\omega}}} \rfloor = 16381, \cdots \) WMW、A086238 | ||||
1.94359643682075 | ランダウトーシェント定数 | Landau’s totient constant | ||
\(\displaystyle \prod_{p} \left( 1+ \frac{1}{p^2 – p} \right) \\\displaystyle = \frac{\zeta \left( 2 \right) \zeta \left( 3 \right)}{\zeta \left( 6 \right)} = \frac{315 \zeta \left( 3 \right)}{2 \pi^4} \) WMW1、WMW2、A082695 | ||||
1.954085357876 | トーシェント関数の関連する値 | Totient Function | ||
\(\displaystyle \sum_{n \geq 1} \frac{\phi \left( n \right)}{n!} \) A000010 | ||||
1.96285817320964 | Reciprocal Lucas Constant | |||
\(\displaystyle P_{L} = \sum_{n \geq 1} L_{n}^{-1} \) WMW、A093540 | ||||
1.96594823664548 | Pentanacci Constant | 代 | ||
x5-x4-x3-x2-x-1=0の解の一つ WMW、A103814 | ||||
1.98358284342432 | Hexanacci Constant | 代 | ||
x6-x5-x4-x3-x2-x-1=0の解の一つ WMW、A118427 | ||||
1.99196419660503 | Heptanacci Constant | 代 | ||
x7-x6-x5-x4-x3-x2-x-1=0の解の一つ WMW、A118428 | ||||
2 | 三角数の逆数和 | 自 | ∞ | |
コメント